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Benchmark, frozen-core CCSD(T) equilibrium harmonic vibrational frequencies of 12 closed-shell and five
open-shell molecules are computed to within 1-éraf the basis set limit using the explicitly correlated
CCSD(T)-R12 method. The convergence of the standard CCSD(T) method with the one-particle basis sets of
Dunning and co-workers is examined and found to be slow, with mean and maximum absolute errors of 1.3
and 3.5 cm?! remaining at the cc-pV6Z level. Finite basis set effects do not appear to introduce systematic
errors in equilibrium harmonic frequencies, and mean absolute errors reduce by a factor of 2 for each basis
set cardinal number increment. The convergence of individual equilibrium harmonic frequencies is not
guaranteed to be monotonic due to the associated shift in the equilibrium structure. The inclusion of computed
scalar relativistic effects and previously available corrections for core-valence correlation and higher-order
excitations in the cluster operator results in an agreement with experimentally derived harmonic frequencies

of 0.1, 0.3, and—0.4 cn! for HF, N,, and CO, respectively. ,Fcontinues to present a challenge to
computational chemistry with an error of 3.2 cthprimarily resulting from the high basis set dependence of
the quadruples contribution.

1. Introduction Because of the availability of optimized basis sets for first
and second row elements with cardinal numbers 2 throd§h 6
and coupled-cluster implementations to arbitrary level of
excitation”8 many careful studies have been performed for the
convergence of the energy to the basis set limit FCI véidk.
The convergence with respect to the level of excitation included

One of the fundamental questions that theoretical chemists
face is: which level of approximation to the exact solution of
the qguantum mechanical wave equation is required for a given
accuracy relative to experimental observations? Or, equiva-

lently: how accurate is a particular computational method? In in the cluster operator is rapid, provided that the state is

thoisgfee?;re 322&%71%??2#‘“;5 ;g)%;srgotrhgﬁtla.ngzgesss:n;telnst (c))?lt);l(i('j ominated by a single Hartre&ock reference determinant. The
\F/)arious metr?ods on the performance of previous applications COMVergence with the one-patrticle basis is notoriously slow due
of the theory. Careful cor?ver ence studieF; reducion:arrors b to the ineffectual representation of the electron clisi
ory. & . 9 » reaucing Y Methods that include the interelectronic distance explicitly in
systematically improving the level of approximation, therefore . : . .
. o L . the form of the wave function are required to obtain near basis
play an important role, providing definitive error bars for a given

method over a set of test systems, which may then be used tOset limit values for total energies. Because of the systematic

guide the general application and development of quantum way the Dunning basis sets are construqted, the pasis set error
chemical methods may also be reduced through extrapolation technigdes.

The convergence of the popular coupled-cluster methods is For relative energies, such as atomization energies, an
. onverg . popular coup accuracy of 1 kcal molt relative to experiment may be generally
in two directions: the level of excitation in the cluster operator

that defines the wave function and the size of the one-particle obtained by extrapolating frozen-core (fc) CCSD(T) energies

basis in which the wave function is expanded. Benchmark to close o the basis set limit and using all-electron (ae)
. ' panded. be calculations to include an approximate treatment of core-valence
reference data, either from full configuration interaction (FCI)

or basis set limit calculations, form a vital part of any correlqtic_)nli For molecules cont_aining second row atoms, scalar
convergence studies for the cofjpled-cluster class of methods relativistic effects mu§t also be included to malntaln an accuracy
The truncation of the cluster operator at successively higher.Of. 1. keal mol®. To improve agreement W't.h experiment to
levels of excitation forms a natural, physically motivated W'thm 1 kJ mol, many post-CCS_D_(T) contn_b utions must be

. L ’ ..~ considered because they are of similar magnitude. In particular,
hierarchy of approximatiodghat converges to the FCI limit.

Similarly, the carefully constructed correlation-consistent basis full treatment of triple and quadruple excitations together with
Y, ) y more accurate treatments of relativistic effects, and core-valence
sets of Dunning and co-workers form sequences that reduce

finite basis errors in a systematic manfer correlation is required ™12
y ' A number of convergence studies focusing on molecular
¥ Part of the “Thom H. Dunning, Jr., Festschrift" .geome'trles ar;igy;?ratlonal frgquenu'es have begun to appear
*To whom correspondence should be addressed. E-mail: klopper@ [N the literature:> =% Such studies are important because there
chem-bio.uni-karlsruhe.de. is no guarantee that an identical convergence behavior will be
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observed for properties as for the energy. However, most of TABLE 1. Frozen-Core CCSD(T)-R12 Harmonic
these investigations are fairly limited in the extent of systems Frequencies

considered. Recently, some of us have examined the conver- reference geometry

gence of energy gradients in the context of predicting equilib-
rium geometries for a set of 17 small molecues’ In

molecule  parameter apand deg mode We

accordance with the conclusions of other researchers, we found HF r(HF) 1.7332866 o 4142.53
, o o 2 r(OH) 1.8108074 & (bend) 1649.39

that basis set limit fc-CCSD(T) was generally sufficient for an O(HOH)  104.46268  a (s-str) 3835.89
accuracy of 0.1 to 0.2 pm and that the mean absolute deviations b, (a-str) 3946.65
from the basis set limit when using Dunning’s quintugland NH; r(NH) 1.9124265 &, (s-bend)  1056.98
sextuple basis sets are 0.033 and 0.021 pm respectively. The U(HNH)  106.61367  e(a-bend) 1674.71
effect of including quadruples (at the level of a doublbasis) aL (S'?tr) gg?g'g‘;
led to changes in the geometry of around 0.1 pm for multiply CH:(*A)  r(CH) 20937614 :1(3;2,?(1) 1400 55
bonded systems and 0.4 pm for the challenging case,of F O(HCH)  102.06377 & (s-str) 202561
Treatment of the core-valence correlation at the CCSD(T) level by (a-str) 3000.66
was also necessary to obtain a final agreement with experiment CHs r(CH) 2.0550266 t; (bend) 1344.63
to within 0.05 pm. e (bend) 1570.29
Ruden et al. have recently performed a comprehensive study & (S-str) 3035.75

: : : t (a-str) 3158.02

of the convergence of the coupled-cluster harmonic frequencies F, r(FF) 2.6628448 o 931.86
of HF, Ny, F, and CO to experimentally derived valiég.hey N2 r(NN) 2.0764499 oy 2363.36
find that the fc-CCSD(T) method predicts high-quality harmonic  CO r(CO) 2.1356878 o 2167.29
frequencies with mean and maximum absolute errors of 6.4 and HCN r(CN) 2.1825841 x (bend) 728.33
14.4 cn1?, respectively. They also find that the close agreement r(CH) 2.0155145 0 (CN str) 2128.01
; . ) ' - o (CH str) 3438.10
with experiment arises from a high degree of error cancellation pnc r(NC) 2.2123750  (bend) 463.23
between the approximate treatment of triples, the missing core- r(NH) 1.8828294 o (NC str) 2055.93
valence correlation, and the missing contributions from higher- o (NH str) 3813.66
order excitations. Indeed, the effect of including quadruple C©: r(Co) 21949257 m, (bend) 673.92
excitations is as much as 19 chfor Ny. After examining the o0 82%3 %ggg'(l)‘;
basis set dependence of these post-CCSD(T) contributions, andc p, r(CC) 2.2773187 n: (bend) 620.45
including scalar relativistic and diagonal Ber@ppenheimer r(CH) 2.0087522 m, (bend) 748.65
corrections, Ruden et al. report mean and maximum absolute og" (CCstr)  2009.41
errors of 1.1 and 2.3 cm, respectively. ou (asw)  3412.09
Following th_e_ e>_<ce||ent work c_n‘ Ruden et al. and our pr(_avious OH r(OH) 1.8330586 gg (s-stn) 5’8585 gg
study of equilibrium geometries, we intend to provide a po r(NO) 21754467 o 1915.28
benchmark study of harmonic frequencies for the set of 17 small cN r(CN) 2.2167925 o 2071.41
molecules. In this article, we are primarily concerned with the NH; r(NH) 1.9363363 a; (bend) 1601.21
fc-CCSD(T) method, important both in its own right and also O(HNH)  103.04851 ﬁlgig 33%23
as a rung in the ladder of the many additivity §qhemes that aim CH,(By)  r(CH) 2.0348581 a, (bend) 1093 38
tp converge to the exapt solution to the Sdinger equa- O(HCH) 13372363 a (s-str) 3144.13
tion.8~11.28-30 CCSD(T) is also used as a standard tool for b, (a-str) 3373.61

com_puti_ng potential e_'nergy s_urfaces and is_important_for many -, In cm™?, using the energy conversion facty= 219474.6313705
applications concerning assignments and interpretation of thecm-l. ' '

various experimental spectra that exhibit ro-vibrational band
structure.

In Section 2, we present near basis set limit fc-CCSD(T)- coupled-cluster calculations were performed using a restricted
R12 harmonic vibrational frequencies for the set of 12 open Hartree-Fock reference. A 19s14p8d6f4g3h2i basis (9s6p4d3f2g
and five closed-shell molecules that were used as a referenceor H) of ref 37 was used for both the orbital basis and the
set in our geometry study. In Section 3, we examine the basisauxiliary basis for the resolution of the identity employed to
set convergence of the fc-CCSD(T) harmonic frequencies with approximate the many electron integrals, with approximation
the correlation-consistent basis sets of Dunning and co-workers.B for the matrix elements of the geminal functions over the
In Section 4, we use the corrections due to core-valence Fock operator.
correlation and from higher excitations in the cluster operator, gecause analytic derivatives are not yet available, the
computed by Ruden et & and also corrections from scalar equilibrium geometries were optimized by computing a number
relativistic effect_s, to assess the_accuracy of our benchmark data,¢ grid points (at least 5 per degree of freedom) around the
through comparison with experimentally derived values. analytically optimized fc-CCSD(T)/cc-pV6Z equilibrium ge-

. o . ) ometries taken from previous wofk26 The optimized fc-
2. Basis Set Limit CCSD(T)-R12 Harmonic Frequencies CCSD(T)-R12 internal coordinates are reported in Table 1. We

In this section, we present the results of benchmark near basisdo not claim basis set limit accuracy to the eight significant
set limit fc-CCSD(T) calculations using the CCSD(T)-R12 figures quoted, but present the definition of the reference
method®1-35 Our test set of molecules includes the 12 closed- structures used for the subsequent frequency calculations. Taking
shell systems HF, }D, CH; (*A1), NH3, CHy, CO, N, F, HCN, the deviation of the R12 values from structures optimized on a
HNC, GH,, and CQ, and the five open-shell molecules OH 56 extrapolated surface (using the two-point formula of ref 16
(3IT), CN (=1), NH; (?B1), CH, (®B1), NO (IT). CCSD(T)- with the cc-pV5Z and cc-pV6Z basis sets) as a conservative
R12 calculations were performed using the DIRCCR12-OS estimate of the accuracy, we expect the values in Table 1 to be
program3® For the open-shell systems, spin-orbital based within 0.005 pm of the basis set limit.
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TABLE 2: Frozen-Core CCSD(T) Harmonic Frequencies in

cm~1, Computed Using cc-p\KZ Orbital Basis Sets and e
Benchmark CCSD(T)-R12 Calculations i apg—
-pViGZ
molecule  we cc-pVTZ cc-pvVQZ cc-pV5Z cc-pveZ  R12 40 G i
HF o 4177.39 4162.26 4151.01 414551 4142.53 30 g

H,O  a(bend) 1668.88 1659.29 1653.37 1651.28 1649.39
ap(s-str)  3840.92 3844.46 3840.06 3837.27 3835.89
b (a-st)  3945.53 3951.41 3949.33 3947.22 3946.65

NH;  a(s-bend) 1109.21 1084.01 1067.53 1060.51 1056.98 Il I
e(a-bend) 1687.93 1679.63 1677.87 1676.11 1674.71 R e N | —
ai(s-str)  3471.91 3480.47 3481.89 3481.07 3480.64 r | FI[-I_ F | I
e(a-st)  3597.53 3608.78 3612.64 3612.64 3612.77

CH(Z1 ) ap (bend)  1406.57 1402.91 1400.99 1400.10 1400.55
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ai(s-str)  2912.05 2922.04 292502 2924.97 2925.61 SRR R R R R DS EEE DR DS

b, (a-str)  2983.11 2996.15 2999.37 2999.81 3000.66 B e L B
F 0 919.95 921.09 92653 928.48 931.86 R Bzz2c0dad
N3 o 2345.98 235621 2359.83 2361.05 2363.36 * £ L g§2=zz088
co a 2153.73 2164.41 216515 2165.78 2167.29 Figyre 1. Basis set errors in fc-CCSD(T) harmonic frequencies @m

HCN 7 (bend) 716.02 72177 72517  727.19 728.33 computed using cc-pX¥Z basis sets wittK = T, Q, 5, and 6 relative
o (CHstr) 3443.43 3435.51 3437.54 3437.77 3438.10 ’
HNC 7 (bend) 472.56  466.60 464.25 464.14 463.23

o (NCstr) 2045.42 2054.35 2054.32 2054.58 2055.93 Basis A A A A

o (NHstr) 3824.46 3820.64 3816.71 3814.29 3813.66 abs ~max std
CO, my (bend) 660.30 670.52 672.19 673.42 673.92 == T —0.15 13.76 52.24 17.45

gg+ (s-str) 1346.19 1351.92 1352.64 1352.98 1354.04 n —— Q 147 6.17 27.04 853

g, (a-str) 2396.26 2396.41 2394.44 239487 23%6.17 | 11 ..... 5 056 2.81 1056 3.70

We have used the 2002 CODATA recommended values of 6 013 133 354 162

the fundamental physical constadtsyith E, = 4.35974417«
1018 J,3 = 0.5291772108< 10 1°m, andm = 9.1093826

x 10731 kg. We have furthermore used the atomic mass con-
stantm, = 1.66053886x 10727 kg and the relative atomic
masses 1.0078250321 (H), 1218Q), 14.0030740052¢N),
15.9949146221'0), and 18.99840320-F).

The basis set limit projected Hessian matrix was evaluated y
by finite difference, centered at the optimized basis set limit ) _,.;7/:.
geometries in Table 1 and using Hartrdeock vibrational === - -
normal modes as a coordinate system. Off-diagonal elements *° ¢ 2 10 0 200 30 4050 60
of the Hessian matrix were computed by evaluating the second _ _ Harmonic frequency erorin e — _
derivgtive algng the VEC'[(.)I’Ik(.‘F ||)/\/§ and subtra.ctilng the Ec')grﬁ[)itzédizsﬁgsgfp%rggsst{;bgggn\fviz%r(rfrgjoé]:c;’rz%egf:'esmm
(dominant) diagonal contributions. To reduce the finite differ-
ence error, all second derivatives were computed with a seven-
point formula using the points &:h, +2h, and+3h. The step
sizeh was chosen such that the Cartesian displacement vector In this section, we discuss the basis set convergence of fc-
hm~12,;, has a magnitude 0.0&. The associated error in ~ CCSD(T) harmonic frequencies. Because of the large compu-
second derivatives ig/(h%), and the random error associated tational requirement of second derivative calculations, we only
with the energy convergence criteria is negligible. It later consider a subset of the molecules included in our geometry
emerged that, had we computed the pointst@, +2h, and convergence studies. We only include closed-shell systems, and
+4h, utilizing the Richardson extrapolation would then be also exclude Ckiand GH,.
equivalent to a nine-point formula, with an associated error  Analytic second derivative calculatioiswere performed
@(h8). However, this was of no consequence because theusing the ACES2 prograth for the cc-p\XZ correlation-
resulting finite difference error in the harmonic frequencies consistent basis sets with= T, Q, 5, 6. Each Hessian was
computed using the seven-point formula is already below 0.01 evaluated at the equilibrium geometry consistent with the basis
cmL, set used for the calculation. All of the analytically optimi2¢d

The resulting fc-CCSD(T)-R12 harmonic frequencies are =T, Q, 5, 6 geometries are available from previous wk
presented in Table 1. It is not possible to give definite error The resulting harmonic frequencies are detailed in Table 2, and
bars for the deviation of the R12 frequencies from the true basisthe deviations from the CCSD(T)-R12 values are depicted in
set limit, but considering the deviation between the cc-pV6Z Figure 1. The mean and standard deviatis) ¢f the basis set
and R12 values, and the discussions in Sections 3 and 4, weerrors are summarized in Figure 2, together with the mean
expect that the computed fc-CCSD(T)-R12 harmonic frequen- absolute and maximum errors. It is clear that the R12 harmonic
cies are within 1 cm! of the basis set limit. frequencies are in complete agreement with the frequencies

For reference, the MP2-R12, CCSD(R12), CCSD-R12, CCS- computed analytically using orbital-only basis sets.

D(T)(R12), CCSD(T)-R12, CCSD|[T](R12), and CCSDJ[T]-R12 For the cc-pVTZ basis, the mean absolute error is 13.8'cm
energie®>0 of the 17 molecules at the reference equilibrium and the standard deviation is 17.5 ©mThese quantities are
geometries have been included as Supporting Information in approximately halved upon each increment in the cardinal
Tables S3-S6. The corresponding orbital-only values are also number and are 1.3 and 1.6 chrespectively, for the cc-pV6Z
tabulated. basis. Using standard methods, spectroscopic accuracy ofl cm

3. Convergence to the Basis Set Limit
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either requires basis sets larger than cc-pV6Z or extrapolation TABLE 3: Convergence of fc-CCSD(T) Harmonic

of the geometry and Hessian matrix toward the basis set limit. Frequencies (in cnt?) of the Diatomic Closed-Shell _
The NH; umbrella motion converges particularly slowly and m%‘.z%‘ljéei HF, N, F2, and CO at the Reference Geometries
is consistently responsible for the maximum error, which is 52.2

cm for the cc-pVTZ basis and 3.5 crhfor the cc-pV6Z basis basis HF N F co

set. HF and Falso give large errors, with cc-pV6Z deviations cc-pVTZ 4177.79 2388.74 942.93 2196.38
of 3.0 and 3.4 cml, respectively. We recall that the equilibrium cc-pvQz 4147.08 2369.00 934.03 2173.95
geometries of fluorine-containing molecules are also observed cc-pvsZ 4143.94 2365.25 933.01 2169.57

S ; - cc-pvez 4142.83 2364.30 932.27 2168.40
to converge slowly, primarily due to the lack of diffuse functions  gg 4141.97 2363.18 931.53 2167 .26

in the fluorine basis® . . . R12 414253 2363.36 931.86 2167.29
Figure 2 shows that no systematic basis set error is observed.
For our test set, the mean error in the harmonic frequencies is
small for all basis sets, at most 1.5 thhAn inspection of the . y . i@
individual errors did not reveal any discernible pattern, with S'9" ofAﬁS.l—|owever, the qygaﬂfat'c equation — ¢, has one
positive and negative errors spread over bends and stretched 0t 8tX™* = 0 and one aX™ = k. — A'¢/A". If the second
singly bonded and multiply bonded systems. The statistics root f._alls within the range oK con3|de_red, then the obser_ved
indicate that the general convergence of the computed CCSD_erro_r_lnk changeg sign. For polyatomic molecule_s, there is the
(T) second derivatives to the basis set limit behaves similarly @dditional complication that the normal coordinates at the
to that of the energy, and is slow, but steady. This is in full Minimum also vary withX. o
accord with the conclusions of Pawlowski et al., who performed !N contrast to the error in the equilibrium force constant, one
a similar study on five diatomics at the MP2 and CCSD levels Would expect the second derivative at a fixed geometry to
of theory43 converge monotonically with basis set because the convergence
Inspection of Figure 1 reveals that the convergence of behawor_ls simply obtained by d|_fferen_t|at|on of eq 2. We have
individual harmonic frequencies is not always smooth. For 5 tested this for the closed-shell diatomic molecules HE, .
of the 23 frequencies studied, the error changes sign as the basi@"d CO. Using the cc-pXZ basis sets of Dunning and co-
set is increased fron{ = T to X = 6. Simplified extrapolation workers, we have evaluated the fc-CCSD(T) second derivative
methods involving only the eigenvalues of the equilibrium 2t the reference geometries in Table 1 %o T, Q, 5, and 6.
Hessian matrix are therefore unlikely to be successful. The correspor_ldlng harmonic frequencies are presented in Table
For a one-dimensional case (diatomics), the convergence?" together yvlth the R12 values. The convergence is indeed
scheme used to obtain the equilibrium harmonic frequencies in smooth and is from above for all four molecules. Furthermore,

Table 2 corresponds to expressing the potential curve as we have performed an extrapolation of the second derivatives
using the cc-pV5Z and cc-pV6Z basis sets. Subtracting the

a Extrapolated using cc-pV5Z and cc-pV6Z in eq 4.

1 2 1 2 A Hartree-Fock contribution to the force constant, we extrapolated
EX) = §k + g¢ +0x) 1) the correlation contributiok® using the formul#®
wherex =1 — re, and the spectroscopic quantitigsp, andre . XK — YY)
depend on the basis set. This is useful because the observed ~ W 4)

convergence of these quantities relates directly to the quality

of the potential surface that would be obtained with a given ) )
basis. It is observed that a potential energy curve may be whereX andY are the cardinal numbers of the two basis sets.

represented B§ The final 56 extrapolated second derivative is taken as the sum
of the extrapolated® and the cc-pV6Z HartreeFock value.
E(r) = E.(r) ~|—A(r)X_3+ O, ) The corresponding harmonic frequencies are also presented

in Table 3. The differences between the 56 extrapolation and
the R12 values are-0.6, —0.2, —0.3, and 0.0 cm! for HF,

Ny, F,, and CO, respectively. The extrapolated values tend to
slightly overshoot the R12 values and the largest deviations are
for HF and K, for which diffuse functions are known to be
important. This is convincing evidence that our R12 values for
these molecules are very close to the basis set limit. We expect
that our benchmark, basis set limit predictions for the remaining
molecules in Table 1 are similarly accurate.

whereE.(r) is the basis set limit and the cunir) is the leading
term in the basis set error. Note that, in this equation, and for
the rest of this sectionX denotes the cardinal number of the
basis. The dependence of the basis set ekoronr adds a
bias to the potential, with the first derivativ(r) primarily
responsible for the shift in the position of the minimum and
the second derivativeA”’(r) affecting the force constant.
ExpandingA(r) as a Taylor series to second orderxis r —
(re) and writing E«(r) in the form of eq 1, one finds that the
second derivative at the minimum Bfr) as a function oX is
given by Harmonic frequencies are not experimentally observed quan-
tities. To compare with experiment, it is necessary either to
A'%)z (kw A'¢m)2 3) compute fundamental frequencies directly or to fit the param-

4. Comparison with Experiment

A AT eters of a model Hamiltonian to the observed spectrum and
extract the harmonic vibrational contribution. The computation
Clearly, the observed error df for a given basis depends of fundamental frequencies requires a quantum treatment of the
strongly on the magnitude of the anharmonicity in the surface, ro-vibrational nuclear motion on a potential energy surface,
i.e., the change in the second derivative due to each newwhich mustinclude an adequate treatment of anharmonicity so
equilibrium geometry. In fact, eq 3 is sufficient to rationalize that the comparison with the observed fundamentals reflects the
the patterns of convergence displayed in Table 2. Neglecting quality of the harmonic frequencies. We therefore choose to
anharmonicity, the sign of the observed error depends on therestrict our discussion to the closed-shell diatomic molecules

k2=k§,+(A”X_3+kw—
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TABLE 4: Relativistic Effects on the Harmonic Vibrational TABLE 5: Best Estimates of the Harmonic Vibrational
Frequencies (cm?) of the Diatomics HF, N, F, and CO?2 Frequencies (in cn?) of the Diatomic Closed-Shell
Molecules HF, N, F», and CO
+ DPT
molecule nonrel + DPT + Breit contribution HF N F, co
HF 4142.53 4139.75 4139.12 CCSD(T)-R12 41425 2363.4 9319 2167.3
N2 2363.36 2362.55 2362.08 CCSDTQ-CCSD(™ —45 -9.1 -122 —6.5
F> 931.86 931.47 931.21 CCSDTQ5-CCSDT®Q -0.1 -3.9 -0.8 0.0
CO 2167.29 2166.41 2165.98 core-correlation correctidn 4.0 9.8 1.6 9.9
a L . L . . relativistic DPT correctioh —-2.8 -0.8 —-0.4 -0.9
The relativistic corrections to the harmonic vibrational frequencies  ggit correction —0.6 —05 —03 —04
were obtained by adding first-order direct perturbation theory (DPT) pest estimate 41385 2358.9 919.8 2169.4
and Breit interaction corrections (obtained at the ae-CCSD(T)/aug-cc- experimerit 4138.4 2358.6 916.6 2169.8

pCVQZ level) to the fc-CCSD(T)-R12 energies.
aThis work, cf. Table 1° Frozen-core cc-pVTZ level, taken from

: . . ref 24.¢Frozen-core cc-pVDZ level, taken from ref Z4From ae- and
HF, Np, F>, and CO, for which highly accurate SpectrosCopiC (-~ ap myaug-cc-pCV5Z calculations, taken from ref 22his work,

constants are availgble and a direct comparison of harmonict Taple 4. Ref 44. See ref 53 for HE.
frequencies is possibfé.

Itis clear that a correlation treatment beyond the fc-CCSD-  The final values are in exceedingly good agreement with the
(T) method is essential for accurate predictions of vibrational narmonic frequencies extracted from experimental spéttra,
frequencies?244> Sufficiently converged corrections due to  \yhich underlines the accuracy of our fe-CCSD(T)-R12 harmonic
these higher-order effects must be included if the quality of the frequencies for these four molecules. The deviation from the
dominant fc-CCSD(T)-R12 harmonic frequencies is to be experimental values are 0.1, 0.3, 3.2, and 0.4%cfor HF, Ny,
assessed by comparison with those derived from experiment.c,  ang CO, respectively. Ruden et al. also performed a basis
Taking the same set of diatomics, Ruden et al. performed get convergence study of the post-CCSD(T) corrections and
calculations of the harmonic frequencies, correcting for core- concluded that the most likely source of error ferigthe large
valence correlation and up to connected quintuple excitations pagis set dependence of the quadruples contributions.

in the cluster operator. They make the assumption that the A frther test of our basis set limit fe-CCSD(T) predictions
successive corrections to the harmonic frequencies are additive;g 0 comparison with those presented by Ruden et al., who

Taking the fc-CCSD-R12 value as the starting point, they comhine aug-cc-pv6z CCSD(T) corrections to CCSD-R12
determine a correction for perturbative triples by computing the values computed by Pawlowski et%dThe basis set used for

fc-CCSD and fc-CCSD(T) potential curves with an aug-cc-pV6Z 1o ccsD-R12 values in that work was 19514p10d8f5g3h

basis. The correction to the harmonic frequency is taken to be (9s6p4ds3f for H), which has more d, f, and g functions than
the difference between the harmonic frequencies at the differenty,¢ used in this work but does not contain any i functions (or

minima on the two surfaces. Proceeding in this way, they g ¢nctions for H). The deviations of their estimates of the basis
compute corrections due to ae-CCSD(T)/aug-cc-pCVSZ, fe- get |imit f-CCSD(T) values from ours are 0:40.8, and—0.3

CCSDTQ/cc-pVTZ, and fC-CCSDTQ5/.C(.:-F.)VDZ. ) cm! for HF, N, and CO, and-1.1 cnt! for the challenging
Additionally, we have computed relativistic corrections at the F, molecule. This is further confirmation of our estimated 1

ae-CCSD(T) level in the aug-cc-pCVQZ ba¥is. At each point cm! for the error bars of our near basis set limit fc-CCSD-
used to compute the CCSD(T)-R12 frequencies, we used the(1y.R12 harmonic frequencies.

Dalton program packad&to compute the relativistic effects
arising from first-order direct perturbation theory (DPTTFO

and those from the Breit interactiShAdding these corrections

to the fc-CCSD(T)-R12 curve defines a new surface upon which
the new equilibrium geometry and harmonic frequency may be
evaluated. The resulting harmonic frequencies are reported in
Table 4. Ruden et al. also computed relativistic corrections, at
the fc-CCSD/aug-cc-pVQZ level, and their computed shifts

As a final remark on the topic of comparison with experiment,
we note that the Breit correction to the harmonic frequency is
of the same order of magnitude as the DPT relativistic
corrections even though the correction to the energies is an order
of magnitude smaller (£112% for the four molecules studied).
We observe that it is important to include these very small
contributions to the total energy when computing geometries
. . and frequencies to spectroscopic accuracy. However, because
differ at most by 0.2 cm" from our slightly more accurate o Breit term is independent of the nuclear charge, we expect

vk?lues. For réefe:er_]c_e,_we have listed Ir;]dlwdualgomponents fthat its relative importance with respect to the mass-velocity
the computed relativistic corrections to the ground-state energies, 4 one-electron Darwin terms will diminish quickly as we

gt7t)he reference geometries in the Supporting Information (Table proceed to molecules containing second row elements.
In Table 5, we have added our scalar relativistic corrections 5. Conclusions
and the corrections of Ruden et al. due to core-valence and
higher-order excitations to our CCSD(T)-R12 harmonic fre-  We have presented benchmark, near basis set limit fc-CCSD-
qguencies. In contrast to ref 24, we do not include diagonal (T) equilibrium harmonic frequencies for a set of 12 closed-
Born—Oppenheimer corrections (DBOC). We observe that there shell and five open-shell molecules, computed numerically using
appears to be a sign error in the reported DBOC value for HF the explicitly correlated CCSD(T)-R12 method with a careful
in Table 5 of ref 24. The values labeled (d) and (f) in Table 1 elimination of the finite difference error. The subwavenumber
of the original work of Handy and Lé&gindicate adecreaseof agreement of our harmonic frequencies for the diatomics HF,
—0.35 cn1? rather than an increase of 0.4 th However, Ny, F,, and CO with values extrapolated from the cc-pV5Z and
Mudiller et al. report in ref 53 that the (f) value in ref 52 was in  cc-pV6Z results indicates that our values are within I twf
fact erroneous. According to ref 53, the correct SCF/6-31G* the basis set limit. Furthermore, combining our R12 values with
DBOC value is 0.03 cmt and can be neglected. The DBOC scalar relativistic corrections and contributions from core-valence
values reported by Handy and Lee fos &hd F, are similarly correlation and up to connected quintuple excitations in the
negligible, being 0.03 and 0.02 cf) respectively? cluster operator, we obtain an agreement with experimentally
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